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Consider the SDEs:

dXε,α
t = b(Xε,α

t , Y ε,α
t )dt+

√
εσ(Xε,α

t , Y ε,α
t )dBt, (e-1)

with initial condition Xε,α
0 = x0 ∈ Rd, Y ε,α

0 = i. (Y ε,α
t )t≥0 is a purely

jumping process over S = {1, 2, . . . , N}, N ≤ ∞, satisfying

P(Y ε,α
t+δ = j|Y ε,α

t = i,Xε,α
t = x) =

 1
αqij(x)δ + o(δ), i 6= j,

1 + 1
αqii(x)δ + o(δ), i = j.

(e-2)

ε, α > 0, Assume always α = α(ε)→ 0 as ε→ 0.

(Xε,α
t ) is slow process, (Y ε,α

t ) is fast process.

Xε,α
t and Y ε,α

t are fully coupled. Namely, b(x, y) σ(x, y), qij(x).
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�� ��Our Main Concerns :

1 The dependence of Q-matrix (qij(x)) on x

2 The state space S is infinitely countable

3 The ratio ε/α as ε, α→ 0
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Key feature of fully coupled slow-fast system

1 The fast component reaches its equilibrium state at much shorter time,

but its equilibrium depends on the state of the slow component.

2 The slow component evolves approximately as a system by averaging

its coefficients over the local stationary distributions of the fast com-

ponent.

3 Such approximations yield a significant model simplification, which is

justified mathematically by establishing Averaging Principle
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Parts of related works

♣ Both slow process and fast process are diffusions

∗ R. Khasminskii, 1968

∗ R. Khasminskii, G. Yin, J. Differential Eqs. 2005

∗ R. Liptser, PTRF, 1996.

∗ A. Veretennikov, Ann. Probab. 1999

∗ A. Puhalskii, Ann. Probab. 2016

∗ W. Liu, Rockner, X. Sun, Y. Xie, JDE 2020

∗ J. Bao, Q. Song, G. Yin, C. Yuan, SAA, 2017
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Parts of related works

♣ One is diffusion process, another is Markov chain

1 Q. He, G. Yin, Asymptotic Analysis, 2014

2 R. Kraaij, M. Schlottke, A large deviation principle for Markovian slow-

fast systems, arXiv, 2021

3 R. Kumar, L. Popovic, Large deviations for multi-scale jump-diffusion

processes, Stoch. Proc. Appl. 2017

4 A. Faggionato, D. Gabrielli, M. Crivellari, Markov Process. Related

Fields 2010

5 A. Budhiraja, P. Dupuis, A. Ganguly, Electron. J. Probab. 2018

c© Ref. 4 and Ref. 5 studied “fully coupled” systems with jumping over

a finite state space.
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LDP on such a slow-fast system

• R. Kumar, L. Popovic, 2016, SPA

− General two time-scale jump diffusions

− Critical assumption: Comparison Principle

− Nonlinear semigroup method: cf. Jin Feng and Kurtz (2006)

• Budhiraja, Dupuis, Ganguly, 2018, Electron. J. Probab.

− weak convergence method

− S is a finite state space, i.e. N <∞, α = ε

− establish the averaging principle based on Freidlin-Wentzell (1979):

When S is finite, invariant measure (πxi )i∈S for (qij(x)) is given as a ratio of

polynomials of transition probabilities, and so x 7→ πxi is Lipschitz continuous.
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Parts of related works

∗ Beznidenhout, 1987, Ann. Probab. α = 1, qij(x) independent of x,

Markovian switching

∗ A. Eizenberg, M. Freidlin, 1993, Ann. Probab.

− Xε
t in a bounded domain, Y αt in a finite state space

− Additive noise, α ≡ 1.

∗ M. Freidlin, Lee, 1996, Probab. Theory Relat. Fields

− multiplicative noise, α = ε

− Study the limiting behavior of reaction-diffusion system:L
ε
iu
ε(x, i)+ 1

ε

N∑
j=1

qij(x)(uε(x, j)−uε(x, i)) = 0, x ∈ G, bounded domain

uε(x, i)
∣∣
∂G

= g(x, i), i = 1, . . . , N.
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Conditions on the coefficients

For the system (Xε,α
t , Y ε,α

t ) given in (e-1), (e-2),

(A1) There exist constants K1, K2 > 0 such that

|b(x, i)− b(y, i)|+ ‖σ(x, i)− σ(y, i)‖ ≤ K1|x− y|,

|b(x, i)|+ ‖σ(x, i)‖ ≤ K2, x, y ∈ Rd, i ∈ S.

(A2) ∀x ∈ Rd, (qij(x))i,j∈S is conservative, irreducible, and

sup
x

sup
i∈S

qi(x) <∞.

(A3) There exists a constant K3 such that

|qij(x)− qij(y)| ≤ K3|x− y|, x, y ∈ Rd, i, j ∈ S.
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♠ Our challenge in establishing Averaging Principle:

the continuity of x 7→ πx in ‖ · ‖var.

The Markov chain Pt is called ergodic if

lim
t→∞
‖Pt(i, ·)− π‖var = 0, i ∈ S;

is called exponentially ergodic if ∃λ,Ci > 0

‖Pt(i, ·)− π‖var ≤ Cie−λt, t > 0, i ∈ S;

is called strongly ergodic if

lim
t→∞

sup
i∈S
‖Pt(i, ·)− π‖var = 0.

Rem. If Markov chain is strongly ergodic, its convergence rate must be

sup
i∈S
‖Pt(i, ·)− π‖var ≤ Ce−λt, t > 0.
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Let P xt be the semigroup associated with (qij(x)), and πx its invariant

probability measure.

(A4) Suppose that ∃ c1, λ1 > 0 such that

sup
i∈S
‖P xt (i, ·)− πx‖var ≤ c1e−λ1t, t > 0, x ∈ Rd.

Proposition 1. (Strongly ergodic case)

Assume (A2), (A3) and (A4) hold. Then, the functional x 7→ πx from Rd

to P(S) is Lipschitz continuous, i.e.

‖πx − πy‖var ≤ Cπ|x− y|, x, y ∈ Rd,

for a constant Cπ = 2c1K3/λ1.
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Example 1: For each x ∈ (0, 1), let (Y x
t )t≥0 be a birth-death process on

S = {1, 2, . . .} with birth rate qii+1(x) = bi(x) = x for i ≥ 1 and death

rate qii−1(x) = ai(x) = 1 for i ≥ 2. It is clear that qij(x) is Lipschitz

continuous in x for all i, j ∈ S. Then,

(i) for each x ∈ (0, 1), the birth-death Markov chain (Y x
t )t≥0 is exponen-

tially ergodic and not strongly ergodic, satisfying

‖P xt (i, ·)− πx‖var ≤ Ci(x)e−(1−
√
x)2t, t > 0, i ∈ S,

for some Ci(x) > 0 depending on i ∈ S and x ∈ (0, 1).

(ii) Its invariant probability measure πx = (πxi )i≥1 is given by

πxi = (1− x)xi−1, i ≥ 1,

and satisfies

sup
x 6=y

‖πx − πy‖var
|x− y|β

=∞.

This means that x 7→ πx is not Hölder continuous with any exponent

β ∈ (0, 1].
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Conditions on the coefficients

(A5) Assume there exist a positive function θ : S → (0,∞), a decreasing

function η : [0,∞)→ [0, 2] satisfying
∫∞
0 ηsds <∞ such that

‖P xt (i, ·)− πx‖var ≤ θ(i)ηt, t ≥ 0, x ∈ Rd, i ∈ S.

Proposition 2. (Weak ergodicity case)

Assume the conditions (A2), (A3) and (A5) hold, then x 7→ πx is 1/2-Hölder

continuous, i.e.

‖πx − πy‖var ≤ K4

√
|x− y|, x, y ∈ Rd,

where K4 =
√
K3(infi∈S θ(i))

∫∞
0 ηsds.
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Recall that (Xε,α
t ) satisfies the SDE

dXε,α
t = b(Xε,α

t , Y ε,α
t )dt+

√
εσ(Xε,α

t , Y ε,α
t )dBt, Xε,α

0 = x0, Y
ε,α
0 = i.

The limiting system of Xε,α
t is of the form

dX̄t = b̄(X̄t)dt, X̄0 = x0, (e-3)

where

b̄(x) =
∑
i∈S

b(x, i)πxi ,

and (πxi ) is the invariant probability associated with (qij(x)).

The continuity of x 7→ πx impacts the continuity of b̄(x) =
∑

i b(x, i)π
x
i .

The existence and uniqueness of limit system as ε, α→ 0.

Does the ratio ε/α as ε, α→ 0 impact the limit system?
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Theorem 3 (Averaging Principle:strongly ergodic)

Assume (A1)-(A4) hold, then

lim
(ε,α)→0

E|Xε,α
t − X̄t| = 0, t > 0.

According to this theorem, under conditions (A1)-(A4), especially (A4),

the L1-convergence of Xε,α
t to X̄t does not depend on the ratio of ε/α

as ε, α→ 0.
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Theorem 4 (Averaging Principle: weakly ergodic)

Assume that (A1)-(A3) and (A5) hold. In addition, suppose that there exist

constants c2 > 0, c3 < ∞ such that the function θ(·) given in (A5) also

satisfies

Q(x)θ(i) =
∑
j∈S

qij(x)θ(j) ≤ −c2θ(i) + c3, x ∈ Rd, i ∈ S.

Then

(i) for each T > 0, the set of distributions of {(Xε,α
t )t∈[0,T ]; ε, α ∈

(0, 1)} in C([0, T ];Rd) is tight, and any convergent subsequence of

(Xε,α
t )t∈[0,T ] shall converges weakly to a solution (X̄t)t∈[0,T ] of ODE

(e-3).

(ii) If ODE (e-3) admits a unique solution, then (Xε,α
t )t∈[0,T ] converges

weakly to the unique solution (X̄t)t∈[0,T ].
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An interesting example

Let us recall an example presented in G. Yin, Q. Zhang, Continuous-time

Markov chains and applications: a singular perturbation approach, 1998.

Example (Yin-Zhang, Example 7.3)

Let (Λαt )t∈[0,T ] be a continuous time Markov chain on the state space S =

{1, 2} with transition rate

1

α

(
−λ λ

µ −µ

)
,

for some λ, µ > 0. Then, for each T > 0 the collection of distributions of

(Λαt )t∈[0,T ] for α ∈ (0, 1) is not tight.
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Consider the following two time-scale stochastic systems:dXε
t = b(Xε

t , Y
ε
t )dt+ σ(Xε

t , Y
ε
t )dWt, Xε

0 = x0,

dY ε
t = 1

εf(Xε
t , Y

ε
t )dt+ 1√

ε
g(Xε

t , Y
ε
t )dBt, Y ε

0 = y0,

where (Wt) and (Bt) are d-dimensional mutually independent Wiener pro-

cesses, b(x, y) ∈ Rd and f(x, y) ∈ Rd are drifts, σ(x, y) ∈ Rd×d and

g(x, y) ∈ Rd×d are diffusion coefficients.
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For each fixed x, let (Y x,y
t ) be the solution to SDE:

dY x,y
t = f(x, Y x,y

t )dt+ g(x, Y x,y
t )dBt, Y x,y

0 = y.

Denote the semigroup by P xt , the invariant probability measure by πx.

Let b̄(x) =
∫
b(x, y)πx(dy), σ̄(x) =

∫
σ(x, y)πx(dy),

dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt. (e-4)

The averaging principle suggests that often (Xε
t ) converges to (X̄t) in

certain sense.
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In the fully coupled case, Veretennikov (1991) provided a general condition

on the fast component:

There exist functions b̄, σ̄ and K(T ) such that limT→∞K(T ) = 0,

and for all t ≥ 0, T > 0, x, y ∈ Rd,∣∣∣ 1

T
E
[ ∫ t+T

t
b(x, Y x,y

s )ds
]
− b̄(x)

∣∣∣ ≤ K(T )(1 + |x|2 + |y|2),∣∣∣ 1

T
E
[ ∫ t+T

t
σ(x, Y x,y

s )ds
]
− σ̄(x)

∣∣∣ ≤ K(T )(1 + |x|2 + |y|2),

σ̄(x) is nondegenerate, continuous in x.

Aim: wellposedness of the limit system: dX̄t = b̄(X̄t)dt+ σ̄(X̄t)dWt.

The crucial point: the continuity of x 7→ πx.
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An example

Let (Xε
t ) and (Y ε

t ) be stochastic processes respectively on [0, 1] and on

[0,∞) with reflection boundary satisfyingdXε
t = Y ε

t dt+ Y ε
t dWt, Xε

0 = x0 ∈ (0, 1),

dY ε
t = 1

ε f̃(Xε
t , Y

ε
t )dt+ 1√

ε
dBt, Y ε

0 = y0 ∈ (0,∞),

where

f̃(x, y) =
−x3e−xy − (1− x)e−y

x2e−xy + (1− x)e−y
, x ∈ [0, 1], y ∈ [0,∞).

For this example, b(x, y) = σ(x, y) = y are Lipschitz continuous.

Jinghai Shao (Tianjin University) Averaging principle for fully coupled systems Nov. 26, 2022 25 / 31



An example

For each x ∈ [0, 1], the invariant probab. measure πx associated with

dY x,y
t = f̃(x, Y x,y

t )dt+ dBt, Y x,y
0 = y ∈ (0,∞),

is given by

πx(dy) =
(
x2e−xy + (1− x)e−y

)
dy.

Then

b̄(x) :=

∫ ∞
0

b(x, y)πx(dy) =

2− x, if x ∈ (0, 1],

1, if x = 0.

b̄(x) is not continuous at x = 0.

Check directly that for each x ∈ [0, 1] (Y x,y
t ) is exponentially ergodic

but not strongly ergodic.
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Consider the parabolic equation:

∂tu(t, y) = L xu(t, y), t > 0, y ∈ Rd, (e-5)

with u(0, y) = h(y), y ∈ Rd and h ∈ Cb(Rd), where L x is given by

L xv(y) =

d∑
k=1

fk(x, y)
∂v(y)

∂yk
+

1

2

d∑
k,l=1

Gkl(x, y)
∂2v(y)

∂yk∂yl
, v ∈ C2(Rd),

and (Gkl(x, y)) = (gg∗)(x, y).

Let Θx(t, z; s, y), 0≤s <t, denotes fundamental solution to (e-5).
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Proposition 5.

Assume that

1 Strong ergodicity: supy ‖P xt (y, ·)− πx‖var ≤ κ1e−λ1t, t > 0.

2 ∃κ2 > 0
(
f(x1, y)− f(x2, y)) · z ≤ κ2|x1−x2||z|, ∀, x1, x2, y, z ∈ Rd.

3 ∃ c1, c2 > 0,

|∇zΘx(t, z; s, y)| ≤ c1

(t− s)(d+1)/2
e−c2

|y−z|2
t−s .

4 g(x, y) = g(y) depends only on the fast component.

Then C > 0 such that

‖πx1 − πx2‖var ≤ C|x1 − x2|2/3.
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Proposition 6.

Assume that

1 Strong ergodicity: supy ‖P xt (y, ·)− πx‖var ≤ κ1e−λ1t, t > 0.

2 ∃κ3 > 0,

(f(x1, y1)−f(x2, y2)) · (y1−y2) + ‖g(x1, y1)−g(x2, y2)‖2

≤κ3(|x1−x2|2 +|y1−y2|2).

Then for x1, x2 ∈ Rd

WbL(πx1 , πx2) ≤ C|x1 − x2|
λ1

λ1+κ3 .

For µ, ν ∈P(Rd),

WbL(µ, ν) := sup
{
|µ(h)− ν(h)|; |h| ≤ 1, |h|Lip ≤ 1

}
.
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Theorem 7. (Averaging principle)

The conditions of Proposition 6 for the fast component are valid. For the

slow component, assume that

1 ∃κ4 > 0 such that

|b(x1, y1)− b(x2, y2)|2 + ‖σ(x1, y1)− σ(x2, y2)‖2

≤ κ4
(
|x1 − x2|2 + |y1 − y2|2

)
.

2 ∃κ5 > 0 such that |b(x, y)|+ ‖σ(x, y)‖ ≤ κ5(1 + |x|).

3 infx,y∈Rd infξ∈Rd,|ξ|=1 ξ
∗(σσ∗)(x, y)ξ > 0.

Then (Xε
t )t∈[0,T ] converges weakly in C([0, T ];Rd) as ε→ 0 to the process

(X̄t)t∈[0,T ].
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Thank You For Your Attention !

Email:shaojh@tju.edu.cn
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