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This talk is based on the works:

@ Yonghua, Mao, Shao, Averaging and large deviation principles for two
time-scale regime-switching processes, preprint 2022

@ Shao, On the application of ergodic condition to averaging principle for
multiscale stochastic systems, preprint 2022
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Consider the SDEs:
de"" = b(Xf’o‘, Yf’a)dt + \/Ea(Xf’a, Yf’o‘)dBt, (e-1)

with initial condition X5* = z¢ € RL Yy = i. (Y %)>0 is a purely
jumping process over S = {1,2,..., N}, N < oo, satisfying

24ij(2)8 + 0(9), L7 7,

PSS = Y% =i, Xp® = 2) =
1 . .
1+ 2qi(x)d +0(d), i=j.

t+0 —

(e-2)

@ £, >0, Assume always o = a(e) — 0 as ¢ — 0.
o (X[ is slow process, (Y;"%) is fast process.

e X and Y, are fully coupled. Namely, b(z,y) o(x,y), ¢;(z).
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(OUR MAIN CONCERNS )

@ The dependence of Q-matrix (¢;j(x)) on
@ The state space S is infinitely countable

© Theratioe/aase,aa — 0
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Key feature of fully coupled slow-fast system

@ The fast component reaches its equilibrium state at much shorter time,

but its equilibrium depends on the state of the slow component.

@ The slow component evolves approximately as a system by averaging
its coefficients over the local stationary distributions of the fast com-
ponent.

© Such approximations yield a significant model simplification, which is
justified mathematically by establishing Averaging Principle
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Parts of related works

& Both slow process and fast process are diffusions

* R. Khasminskii, 1968

* R. Khasminskii, G. Yin, J. Differential Eqs. 2005
* R. Liptser, PTRF, 1996.

* A. Veretennikov, Ann. Probab. 1999

* A. Puhalskii, Ann. Probab. 2016

+ W. Liu, Rockner, X. Sun, Y. Xie, JDE 2020

x J. Bao, Q. Song, G. Yin, C. Yuan, SAA, 2017
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Parts of related works

& One is diffusion process, another is Markov chain

@ Q. He, G. Yin, Asymptotic Analysis, 2014

@ R. Kraaij, M. Schlottke, A large deviation principle for Markovian slow-
fast systems, arXiv, 2021

© R. Kumar, L. Popovic, Large deviations for multi-scale jump-diffusion

processes, Stoch. Proc. Appl. 2017

@ A. Faggionato, D. Gabrielli, M. Crivellari, Markov Process. Related
Fields 2010

© A. Budhiraja, P. Dupuis, A. Ganguly, Electron. J. Probab. 2018

(© Ref. 4 and Ref. 5 studied “fully coupled” systems with jumping over

a finite state space.
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LDP on such a slow-fast system

e R. Kumar, L. Popovic, 2016, SPA
— General two time-scale jump diffusions
— Critical assumption: Comparison Principle
— Nonlinear semigroup method: cf. Jin Feng and Kurtz (2006)

e Budhiraja, Dupuis, Ganguly, 2018, Electron. J. Probab.
— weak convergence method
— S is a finite state space, i.e. N <00, @ =¢
— establish the averaging principle based on Freidlin-Wentzell (1979):
When S is finite, invariant measure (7¥);es for (g;;(x)) is given as a ratio of

K3
polynomials of transition probabilities, and so « — 7 is Lipschitz continuous.
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Parts of related works

* Beznidenhout, 1987, Ann. Probab. a = 1, ¢;(x) independent of z,
Markovian switching
+ A. Eizenberg, M. Freidlin, 1993, Ann. Probab.

— X7 in a bounded domain, Y¥,* in a finite state space
— Additive noise, o« = 1.

+« M. Freidlin, Lee, 1996, Probab. Theory Relat. Fields
— multiplicative noise, o« = ¢

— Study the limiting behavior of reaction-diffusion system:

Liu (w,4)+1 Z gij(x)(u®(z,j)—u®(z,1)) =0, = € G,bounded domain
Jj=

us xz|aG=g( i), i=1,...,N.
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Conditions on the coefficients

For the system (X, Y,"%) given in (e-1), (e-2),
(A1) There exist constants K1, K2 > 0 such that

[b(2, @) = b(y, )] + [lo(x, i) — oy, )| < Kilz -y,
lb(z,i)| + ||o(z,i)]| < K2, z,y€R% ieS.
(A2) Vz € R?, (gij(z))i jes is conservative, irreducible, and
supsup ¢;(x) < 0.
T €S

(A3) There exists a constant K3 such that

|gij (%) — qij (y)| < K|z -y, z,y€RY i,j€S.
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& Our challenge in establishing Averaging Principle:

the continuity of z — 7% in || - ||var-
@ The Markov chain P, is called ergodic if
lim [|P(i,) — 7||var =0, 1€ S;
t—o0
o is called exponentially ergodic if A\, C; > 0
1P,(i,-) — T)var < Cie™™, t>0,i€S;
@ is called strongly ergodic if
lim sup || P(4,-) — 7||var = 0.
t—o0 icS
Rem. If Markov chain is strongly ergodic, its convergence rate must be

Sup ||Pt(z7 ) - 7THvar < Ce_kt, t> 0.
i€S
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Let P® be the semigroup associated with (g;;(z)), and 7% its invariant

probability measure.

(A4) Suppose that 3¢1, A1 > 0 such that

sSup Hptx(27 ) - 7Tx”var < Cle_)\lt, t> O,J} € Rd.

€S

Proposition 1. (Strongly ergodic case)
Assume (A2), (A3) and (A4) hold. Then, the functional  + 7% from R?
to Z(S) is Lipschitz continuous, i.e.

7% — 7Y]var < Crlz —y|, =z,9y€ Rda

for a constant C; = 2¢1 K3/ 1.
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Example 1: For each z € (0,1), let (Y;*)¢>0 be a birth-death process on
S = {1,2,...} with birth rate ¢;i+1(z) = bi(x) = x for i« > 1 and death
rate g;i—1(xz) = a;(x) = 1 for i > 2. It is clear that g¢;;(x) is Lipschitz
continuous in z for all i, 7 € S. Then,
(i) for each x € (0, 1), the birth-death Markov chain (Y;*);>0 is exponen-
tially ergodic and not strongly ergodic, satisfying

HPtx(iv ) - 7TIHVar < Ci(x)e_(l_ﬁ)%, t>0,1¢€ S,

for some C;(x) > 0 depending on i € S and z € (0, 1).

(ii) Its invariant probability measure 7% = (77);>1 is given by

8 =1 —-x)zt i>1,

and satisfies
[7* — 7Y var

SUp — 57— = 00

Ty ‘.%' - y‘
This means that z — 7® is not Holder continuous with any exponent
B € (0,1].
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Conditions on the coefficients
(A5) Assume there exist a positive function 6 : S — (0,00), a decreasing
function 7 : [0,00) — [0,2] satisfying [} nsds < oo such that
|PE(iy ) = 7 |lvar < 0(@)me, t>0, z€RY G€S.

Proposition 2. (Weak ergodicity case)
Assume the conditions (A2), (A3) and (A5) hold, then z +— 7©” is 1/2-Hdlder

continuous, i.e.

|7 — 7Y var < Ka/|z — 9|,  x,y €RY,

where K4 = \/K:a(infz'es 0(1)) Jo msds.
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Recall that (X;“) satisfies the SDE
dX;% =b( X7, YN dt+/eo (X7, YN dBy, X5 = 20, Yy =i

The limiting system of X;** is of the form

dXt = I_)(Xt)dt, Xo = 20, (6—3)

where

b(x) =Y _blx,i)n],

i1€S
and (m¥) is the invariant probability associated with (g;;(x)).

3
@ The continuity of z — 7% impacts the continuity of b(z) = Y, b(z,)7%.
@ The existence and uniqueness of limit system as €, — 0.

@ Does the ratio ¢/« as €,a — 0 impact the limit system?
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Theorem 3 (Averaging Principle:strongly ergodic)
Assume (A1)-(A4) hold, then

lim E[X7®— X,|=0, t>0.

(g,0)—0

@ According to this theorem, under conditions (A1)-(A4), especially (A4),
the L!-convergence of X;** to X; does not depend on the ratio of £/«
as e, a — 0.
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Theorem 4 (Averaging Principle: weakly ergodic)

Assume that (A1)-(A3) and (A5) hold. In addition, suppose that there exist
constants ¢z > 0, ¢3 < oo such that the function 6(-) given in (A5) also
satisfies

Q(@)0(i) = Y ij(2)0(j) < —c20(i) + c3, z€R% i€ S.
jes
Then

(i) for each T" > 0, the set of distributions of {(X;“)ico.1];6, €
(0,1)} in C([0,T];R?) is tight, and any convergent subsequence of
(X;“)tejo,r) shall converges weakly to a solution (X;),ep0,r] of ODE
(e-3).

(i) If ODE (e-3) admits a unique solution, then (X;*®)icjo.7] converges

weakly to the unique solution (Xt)te[O,T]-

v
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An interesting example

Let us recall an example presented in G. Yin, Q. Zhang, Continuous-time
Markov chains and applications: a singular perturbation approach, 1998.

Example (Yin-Zhang, Example 7.3)

Let (A{)se[o,m) be a continuous time Markov chain on the state space S =

12 A
a\p —pf’

for some A, > 0. Then, for each T" > 0 the collection of distributions of
(Af)iepo,r) for @ € (0,1) is not tight.

{1,2} with transition rate
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Consider the following two time-scale stochastic systems:

AX§ = b(XE, YE)dt + o(XE, YE)AW,,  XE = o,
Yy = LA(XF,YP)dt + Jzg(X7, Y)dBe, Y5 = o,
where (W) and (B;) are d-dimensional mutually independent Wiener pro-

cesses, b(x,y) € R? and f(z,y) € RY are drifts, o(z,y) € R4 and
g(z,y) € R¥™9 are diffusion coefficients.
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For each fixed z, let (Y;"") be the solution to SDE:

Ay = f(z,Y,"Y)dt + g(z,Y,"V)dB,, Y =y.

Denote the semigroup by Pf, the invariant probability measure by 7*.

Let b(z) = [ b(z,y)n*(dy), 6(z) = [ o(z,y)7"(dy),

dX; = b(Xy)dt + 5(Xy)dW,. (e-4)

The averaging principle suggests that often (X;) converges to (X;) in

certain sense.

Jinghai Shao (Tianjin University) Averaging principle for fully coupled systems Nov. 26, 2022 23 /31



In the fully coupled case, Veretennikov (1991) provided a general condition
on the fast component:

@ There exist functions b,  and K(T) such that limy ., K(T) = 0,
and forallt >0, T >0, x,y € R,

7| /tHTW vo)ds| — b(e)| < K@)+ ol + 1),
‘;‘E{/tHTU(x’Kf’y)ds} —6(35)‘ < K(T)1+ \x|2 4 ’y‘2)7

@ o (x) is nondegenerate, continuous in x.

e Aim: wellposedness of the limit system: dX; = b(X;)dt + &(X;)dW;.

@ The crucial point: the continuity of x +— 7*.
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An example

Let (X7) and (Y,) be stochastic processes respectively on [0, 1] and on

[0, 00) with reflection boundary satisfying

dXE = YEdt + YEdW,, X& =2 € (0,1),

aVF = L(XE, Vo) + By i = € (0,00),

where

= —x3e™ — (1 —x)e™V
fay) = 22~ 4 (1 —x)e v

For this example, b(x,y) = o(x,y) = y are Lipschitz continuous.
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An example
For each = € [0, 1], the invariant probab. measure 7% associated with

dY;m’y = f(;l?, thx’y)dt + dBt, }/E)x’y =y € (O, OO),

is given by
™ (dy) = (2% ™ + (1 — z)e”Y)dy.

Then

_ o N 2—z, ifze(0,1],
bo)i= [ b g)a() = |

0 1, if x =0.
@ b(z) is not continuous at z = 0.

o Check directly that for each = € [0,1] (Y;"Y) is exponentially ergodic
but not strongly ergodic.
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Consider the parabolic equation:
Opu(t,y) = L u(t,y), t>0, yeRY, (e-5)

with u(0,y) = h(y), y € R? and h € Cy(R?), where £ is given by

9*v(y)
8 Ou’ v e C*(RY),

d
Lou(y) =) filx,
k=1

kll

and (G(z,y)) = (997)(z, y).
Let ©%(¢, z;5,y), 0<s <t, denotes fundamental solution to (e-5).
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Proposition 5.
Assume that

Q Strong ergodicity: sup, | PF(y, ) — 7 ||var < 1M,

Q@ dky >0 (f(acl,y)—f(:cg,y))~z < Kalx1 —x2l|2
Q dcyi,c0 >0,

c1 o=z

X . w7 T 2
]VZG (t,Z,S,y)‘ S (t _ 8)(d+1)/2

Q g(z,y) = g(y) depends only on the fast component.
Then C' > 0 such that

7% — 772 ||var < Clzg — w2\2/3.

CVox1,29,y, 2 € R<.

(§] t—s |

t> 0.
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Proposition 6.
Assume that

@ Strong ergodicity: sup,, [|PF(y, ) — 7°[lvar < ke Mt > 0.
Q - k3 > 0,

(f(z1,y1)— f(22,92)) - (y1—y2) + llg(z1, y1) —g(z2, 42) ||?

<r3(jzr—zo® +|y1 —ya|?).
Then for 1,29 € R?

A
WbL(ﬂ'zl,ﬂ'z2) < C|a:1 — xo|Mtr3

For p,v € 2 (R%),

Wor (p,v) = sup {|u(h) — v(R)|; [h] < 1, |hlLyp < 1}.
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Theorem 7. (Averaging principle)
The conditions of Proposition 6 for the fast component are valid. For the

slow component, assume that

@ dk4 > 0 such that

b(z1,y1) — b(z2,32)* + l|lo(z1,31) — o2, y2)|?

< ka(|lz1 — 22 + |1 — v2l?).

@ I ks > 0 such that |b(x,y)| + |lo(z, y)|| < Kk5(1 + |z]).

Q inf, ,cpa infgeRdmzl & (oo*)(z,y)€ > 0.
Then (X{)iejo,7) converges weakly in C([0,T]; R?) as € — 0 to the process
(Xt)iefo,1)-

v
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