The averaging principle for fully coupled two time-scale stochastic systems

Jinghai SHAO

Center for Applied Mathematics, Tianjin University @17th Workshop on Markov Processes and Related Topics

Nov. 26, 2022

Jinghai Shao (Tianjin University) [Averaging principle for fully coupled systems](#page-30-0) Nov. 26, 2022 1/31

This talk is based on the works:

- Yonghua, Mao, Shao, Averaging and large deviation principles for two time-scale regime-switching processes, preprint 2022
- Shao, On the application of ergodic condition to averaging principle for multiscale stochastic systems, preprint 2022

 QQ

Contents

[Averaging Principle for slow-fast systems](#page-10-0)

[Multiscale systems: slow process and fast process are both diffusions](#page-20-0)

 \leftarrow

 QQ

Consider the SDEs:

$$
dX_t^{\varepsilon,\alpha} = b(X_t^{\varepsilon,\alpha}, Y_t^{\varepsilon,\alpha})dt + \sqrt{\varepsilon}\sigma(X_t^{\varepsilon,\alpha}, Y_t^{\varepsilon,\alpha})dB_t, \tag{e-1}
$$

with initial condition $X_0^{\varepsilon,\alpha} = x_0 \in \mathbb{R}^d, Y_0^{\varepsilon,\alpha} = i$. $(Y_t^{\varepsilon,\alpha})$ $(t^{(t,\alpha)}_t)_{t\geq 0}$ is a purely jumping process over $S = \{1, 2, ..., N\}$, $N \leq \infty$, satisfying

$$
\mathbb{P}(Y_{t+\delta}^{\varepsilon,\alpha} = j | Y_t^{\varepsilon,\alpha} = i, X_t^{\varepsilon,\alpha} = x) = \begin{cases} \frac{1}{\alpha} q_{ij}(x)\delta + o(\delta), & i \neq j, \\ 1 + \frac{1}{\alpha} q_{ii}(x)\delta + o(\delta), & i = j. \end{cases}
$$
 (e-2)

 $\bullet \varepsilon, \alpha > 0$, Assume always $\alpha = \alpha(\varepsilon) \to 0$ as $\varepsilon \to 0$.

- $(X_t^{\varepsilon,\alpha})$ $\mathcal{E}^{(\varepsilon,\alpha)}_t$ is slow process, $(Y^{\varepsilon,\alpha}_t)$ $\mathcal{L}^{\varepsilon,\alpha}_{t}$) is *fast process*.
- $X_t^{\varepsilon,\alpha}$ ε,α and $Y_t^{\varepsilon,\alpha}$ $t_t^{\varepsilon,\alpha}$ are fully coupled. Namely, $b(x,y)$ $\sigma(x,y)$, $q_{ij}(x)$.

✄ \overline{a} OUR MAIN CONCERNS]:

- **1** The dependence of Q-matrix $(q_{ij}(x))$ on x
- **2** The state space S is infinitely countable
- **3** The ratio ε/α as $\varepsilon, \alpha \to 0$

 QQ

Key feature of fully coupled slow-fast system

- **1** The fast component reaches its equilibrium state at much shorter time, but its equilibrium depends on the state of the slow component.
- **2** The slow component evolves approximately as a system by averaging its coefficients over the local stationary distributions of the fast component.
- **3** Such approximations yield a significant model simplification, which is justified mathematically by establishing Averaging Principle

 QQ

Parts of related works

♣ Both slow process and fast process are diffusions

- ∗ R. Khasminskii, 1968
- ∗ R. Khasminskii, G. Yin, J. Differential Eqs. 2005
- ∗ R. Liptser, PTRF, 1996.
- ∗ A. Veretennikov, Ann. Probab. 1999
- ∗ A. Puhalskii, Ann. Probab. 2016
- ∗ W. Liu, Rockner, X. Sun, Y. Xie, JDE 2020
- ∗ J. Bao, Q. Song, G. Yin, C. Yuan, SAA, 2017

Parts of related works

- ♣ One is diffusion process, another is Markov chain
	- **1 Q. He, G. Yin, Asymptotic Analysis, 2014**
	- **2** R. Kraaij, M. Schlottke, A large deviation principle for Markovian slowfast systems, arXiv, 2021
	- **3** R. Kumar, L. Popovic, Large deviations for multi-scale jump-diffusion processes, Stoch. Proc. Appl. 2017
	- **4** A. Faggionato, D. Gabrielli, M. Crivellari, *Markov Process. Related* Fields 2010
	- ⁵ A. Budhiraja, P. Dupuis, A. Ganguly, Electron. J. Probab. 2018
	- \overline{c} Ref. 4 and Ref. 5 studied "fully coupled" systems with jumping over a finite state space.

 QQ

LDP on such a slow-fast system

- R. Kumar, L. Popovic, 2016, SPA
	- − General two time-scale jump diffusions
	- − Critical assumption: Comparison Principle
	- − Nonlinear semigroup method: cf. Jin Feng and Kurtz (2006)
- Budhiraja, Dupuis, Ganguly, 2018, Electron. J. Probab.
	- − weak convergence method
	- $−$ S is a finite state space, i.e. $N < \infty$, $\alpha = \varepsilon$
	- − establish the averaging principle based on Freidlin-Wentzell (1979): When ${\mathcal S}$ is finite, invariant measure $(\pi^x_i)_{i\in{\mathcal S}}$ for $(q_{ij}(x))$ is given as a ratio of polynomials of transition probabilities, and so $x\mapsto \pi_i^x$ is Lipschitz continuous.

 QQQ

Parts of related works

- * Beznidenhout, 1987, Ann. Probab. $\alpha = 1$, $q_{ij}(x)$ independent of x, Markovian switching
- ∗ A. Eizenberg, M. Freidlin, 1993, Ann. Probab.
	- X_{t}^{ε} in a bounded domain, Y_{t}^{α} in a finite state space
	- − Additive noise, $\alpha \equiv 1$.
- ∗ M. Freidlin, Lee, 1996, Probab. Theory Relat. Fields
	- $-$ multiplicative noise, $\alpha = \varepsilon$
	- − Study the limiting behavior of reaction-diffusion system:

$$
\begin{cases} L_i^\varepsilon u^\varepsilon(x,i) + \frac{1}{\varepsilon} \sum_{j=1}^N q_{ij}(x) (u^\varepsilon(x,j) - u^\varepsilon(x,i)) = 0, \ x \in G, \text{bounded domain} \\ u^\varepsilon(x,i) \big|_{\partial G} = g(x,i), \quad i = 1,\dots,N. \end{cases}
$$

Contents

2 [Averaging Principle for slow-fast systems](#page-10-0)

[Multiscale systems: slow process and fast process are both diffusions](#page-20-0)

 \leftarrow

Conditions on the coefficients

For the system $(X_t^{\varepsilon,\alpha})$ $t^{\varepsilon,\alpha}, Y_t^{\varepsilon,\alpha})$ given in (e-1), (e-2), (A1) There exist constants $K_1, K_2 > 0$ such that

$$
|b(x, i) - b(y, i)| + ||\sigma(x, i) - \sigma(y, i)|| \le K_1 |x - y|, |b(x, i)| + ||\sigma(x, i)|| \le K_2, \qquad x, y \in \mathbb{R}^d, \ i \in S.
$$

 $(A2) \ \forall x \in \mathbb{R}^d$, $(q_{ij}(x))_{i,j \in \mathcal{S}}$ is conservative, irreducible, and

$$
\sup_x \sup_{i \in \mathcal{S}} q_i(x) < \infty.
$$

 $(A3)$ There exists a constant K_3 such that

$$
|q_{ij}(x) - q_{ij}(y)| \le K_3 |x - y|, \qquad x, y \in \mathbb{R}^d, \ i, j \in \mathcal{S}.
$$

♠ Our challenge in establishing Averaging Principle: the continuity of $x \mapsto \pi^x$ in $\|\cdot\|_{\text{var}}$.

The Markov chain P_t is called *ergodic* if

 $\lim_{t\to\infty}$ $||P_t(i,\cdot)-\pi||_{\text{var}} = 0, \quad i \in \mathcal{S};$

• is called exponentially ergodic if $\exists \lambda, C_i > 0$

$$
||P_t(i, \cdot) - \pi||_{\text{var}} \le C_i e^{-\lambda t}, \quad t > 0, i \in \mathcal{S};
$$

• is called *strongly ergodic* if

$$
\lim_{t \to \infty} \sup_{i \in \mathcal{S}} \|P_t(i, \cdot) - \pi\|_{\text{var}} = 0.
$$

Rem. If Markov chain is strongly ergodic, its convergence rate must be

$$
\sup_{i \in S} ||P_t(i, \cdot) - \pi||_{\text{var}} \le C e^{-\lambda t}, \quad t > 0.
$$

 QQQ

Let P_t^x be the semigroup associated with $(q_{ij}(x))$, and π^x its invariant probability measure.

(A4) Suppose that $\exists c_1, \lambda_1 > 0$ such that

$$
\sup_{i \in \mathcal{S}} \|P_t^x(i, \cdot) - \pi^x\|_{\text{var}} \le c_1 e^{-\lambda_1 t}, \quad t > 0, x \in \mathbb{R}^d.
$$

Proposition 1. (Strongly ergodic case)

Assume (A2), (A3) and (A4) hold. Then, the functional $x\mapsto \pi^x$ from \mathbb{R}^d to $\mathscr{P}(\mathcal{S})$ is Lipschitz continuous, i.e.

$$
\|\pi^x - \pi^y\|_{\text{var}} \le C_{\pi}|x - y|, \quad x, y \in \mathbb{R}^d,
$$

for a constant $C_{\pi} = 2c_1K_3/\lambda_1$.

 QQQ

Example 1: For each $x \in (0,1)$, let $(Y_t^x)_{t \geq 0}$ be a birth-death process on $S = \{1, 2, ...\}$ with birth rate $q_{ii+1}(x) = b_i(x) = x$ for $i \ge 1$ and death rate $q_{ii-1}(x) = a_i(x) = 1$ for $i \ge 2$. It is clear that $q_{ij}(x)$ is Lipschitz continuous in x for all $i, j \in S$. Then,

(i) for each $x \in (0,1)$, the birth-death Markov chain $(Y_t^x)_{t \geq 0}$ is exponentially ergodic and not strongly ergodic, satisfying

$$
||P_t^x(i, \cdot) - \pi^x||_{\text{var}} \le C_i(x) e^{-(1-\sqrt{x})^2 t}, \quad t > 0, \, i \in \mathcal{S},
$$

for some $C_i(x) > 0$ depending on $i \in \mathcal{S}$ and $x \in (0,1)$.

(ii) Its invariant probability measure $\pi^x = (\pi_i^x)_{i\geq 1}$ is given by

$$
\pi_i^x = (1 - x)x^{i-1}, \quad i \ge 1,
$$

and satisfies

$$
\sup_{x \neq y} \frac{\|\pi^x - \pi^y\|_{\text{var}}}{|x - y|^\beta} = \infty.
$$

This means that $x \mapsto \pi^x$ is **not** Hölder continuous with any exponent $\beta \in (0,1]$. - 3 Ω

Jinghai Shao (Tianjin University) [Averaging principle for fully coupled systems](#page-0-0) Nov. 26, 2022 15 / 31

Conditions on the coefficients

(A5) Assume there exist a positive function $\theta : \mathcal{S} \to (0,\infty)$, a decreasing function $\eta:[0,\infty)\to[0,2]$ satisfying $\int_0^\infty \eta_s \mathrm{d}s<\infty$ such that

$$
||P_t^x(i, \cdot) - \pi^x||_{var} \le \theta(i)\eta_t, \quad t \ge 0, \ x \in \mathbb{R}^d, \ i \in \mathcal{S}.
$$

Proposition 2. (Weak ergodicity case)

Assume the conditions (A2), (A3) and (A5) hold, then $x\mapsto \pi^x$ is $1/2$ -Hölder continuous, i.e.

$$
\|\pi^x-\pi^y\|_{\text{var}}\leq K_4\sqrt{|x-y|},\qquad x,y\in\mathbb{R}^d,
$$

where $K_4=\sqrt{K_3(\inf_{i\in\mathcal{S}}\theta(i))\int_0^\infty\!\!\eta_s\mathrm{d}s}.$

Recall that $(X_t^{\varepsilon,\alpha})$ $(t^{(t),\alpha}_t)$ satisfies the SDE

$$
dX_t^{\varepsilon,\alpha} = b(X_t^{\varepsilon,\alpha}, Y_t^{\varepsilon,\alpha})dt + \sqrt{\varepsilon}\sigma(X_t^{\varepsilon,\alpha}, Y_t^{\varepsilon,\alpha})dB_t, \quad X_0^{\varepsilon,\alpha} = x_0, Y_0^{\varepsilon,\alpha} = i.
$$

The limiting system of $X_t^{\varepsilon,\alpha}$ $t^{i,\alpha}$ is of the form

$$
d\bar{X}_t = \bar{b}(\bar{X}_t)dt, \quad \bar{X}_0 = x_0,
$$
 (e-3)

where

$$
\bar{b}(x) = \sum_{i \in S} b(x, i)\pi_i^x,
$$

and (π^x_i) is the invariant probability associated with $(q_{ij}(x)).$

- The continuity of $x \mapsto \pi^x$ impacts the continuity of $\bar{b}(x) = \sum_i b(x,i) \pi^x_i$.
- The existence and uniqueness of limit system as ε , $\alpha \to 0$.
- Does the ratio ε/α as $\varepsilon, \alpha \to 0$ impact the limit system?

Theorem 3 (Averaging Principle:strongly ergodic) Assume (A1)-(A4) hold, then

$$
\lim_{(\varepsilon,\alpha)\to 0} \mathbb{E}|X_t^{\varepsilon,\alpha} - \bar{X}_t| = 0, \quad t > 0.
$$

According to this theorem, under conditions $(A1)-(A4)$, especially $(A4)$, the L^1 -convergence of $X_t^{\varepsilon , \alpha}$ $\frac{\varepsilon, \alpha}{t}$ to \bar{X}_t does not depend on the ratio of ε/α as $\varepsilon, \alpha \to 0$.

Theorem 4 (Averaging Principle: weakly ergodic)

Assume that (A1)-(A3) and (A5) hold. In addition, suppose that there exist constants $c_2 > 0$, $c_3 < \infty$ such that the function $\theta(\cdot)$ given in (A5) also satisfies

$$
Q(x)\theta(i) = \sum_{j \in \mathcal{S}} q_{ij}(x)\theta(j) \le -c_2\theta(i) + c_3, \quad x \in \mathbb{R}^d, \ i \in \mathcal{S}.
$$

Then

- (i) for each $T > 0$, the set of distributions of $\{(X_t^{\varepsilon,\alpha})$ $(t^{\varepsilon,\alpha})_{t\in[0,T]};\varepsilon,\alpha \in$ $(0,1)$ } in $\mathcal{C}([0,T];\mathbb{R}^d)$ is tight, and any convergent subsequence of $(X_t^{\varepsilon,\alpha})$ $(\bar{x}_t,\alpha)_{t\in[0,T]}$ shall converges weakly to a solution $(\bar{X}_t)_{t\in[0,T]}$ of ODE $(e-3)$.
- (ii) If ODE (e-3) admits a unique solution, then $(X_t^{\varepsilon,\alpha})$ $\mathcal{E}_t^{(\varepsilon,\alpha)}\}_{t\in[0,T]}$ converges weakly to the unique solution $(\bar{X}_t)_{t\in[0,T]}.$

目

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

An interesting example

Let us recall an example presented in G. Yin, Q. Zhang, Continuous-time Markov chains and applications: a singular perturbation approach, 1998.

Example (Yin-Zhang, Example 7.3)

Let $(\Lambda^\alpha_t)_{t\in[0,T]}$ be a continuous time Markov chain on the state space $\mathcal{S}=$ $\{1, 2\}$ with transition rate

$$
\frac{1}{\alpha} \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix},
$$

for some $\lambda, \mu > 0$. Then, for each $T > 0$ the collection of distributions of $(\Lambda_t^{\alpha})_{t\in[0,T]}$ for $\alpha\in(0,1)$ is not tight.

つへへ

Contents

[Averaging Principle for slow-fast systems](#page-10-0)

3 [Multiscale systems: slow process and fast process are both diffusions](#page-20-0)

 \leftarrow

Jinghai Shao (Tianjin University) [Averaging principle for fully coupled systems](#page-0-0) Nov. 26, 2022 21 / 31

Consider the following two time-scale stochastic systems:

$$
\begin{cases} dX_t^{\varepsilon} = b(X_t^{\varepsilon}, Y_t^{\varepsilon})dt + \sigma(X_t^{\varepsilon}, Y_t^{\varepsilon})dW_t, & X_0^{\varepsilon} = x_0, \\ dY_t^{\varepsilon} = \frac{1}{\varepsilon}f(X_t^{\varepsilon}, Y_t^{\varepsilon})dt + \frac{1}{\sqrt{\varepsilon}}g(X_t^{\varepsilon}, Y_t^{\varepsilon})dB_t, & Y_0^{\varepsilon} = y_0, \end{cases}
$$

where (W_t) and (B_t) are d-dimensional mutually independent Wiener processes, $b(x,y) \, \in \, \mathbb{R}^d$ and $f(x,y) \, \in \, \mathbb{R}^d$ are drifts, $\sigma(x,y) \, \in \, \mathbb{R}^{d \times d}$ and $g(x,y) \in \mathbb{R}^{d \times d}$ are diffusion coefficients.

 QQ

For each fixed x , let $(Y_t^{x,y})$ $\mathcal{L}_t^{(x,y)}$ be the solution to SDE:

$$
dY_t^{x,y} = f(x, Y_t^{x,y})dt + g(x, Y_t^{x,y})dB_t, \quad Y_0^{x,y} = y.
$$

Denote the semigroup by P_t^x , the invariant probability measure by π^x . Let $\bar{b}(x) = \int b(x, y) \pi^x(\mathrm{d}y)$, $\bar{\sigma}(x) = \int \sigma(x, y) \pi^x(\mathrm{d}y)$,

$$
\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}W_t.
$$
 (e-4)

The averaging principle suggests that often (X_t^ε) converges to (\bar{X}_t) in certain sense.

In the fully coupled case, Veretennikov (1991) provided a general condition on the fast component:

• There exist functions \bar{b} , $\bar{\sigma}$ and $K(T)$ such that $\lim_{T\to\infty} K(T) = 0$, and for all $t\geq 0, T>0, x,y\in \mathbb{R}^d$,

$$
\left|\frac{1}{T}\mathbb{E}\Big[\int_t^{t+T} b(x, Y_s^{x,y})ds\Big] - \bar{b}(x)\right| \le K(T)(1+|x|^2+|y|^2),
$$

$$
\left|\frac{1}{T}\mathbb{E}\Big[\int_t^{t+T} \sigma(x, Y_s^{x,y})ds\Big] - \bar{\sigma}(x)\right| \le K(T)(1+|x|^2+|y|^2),
$$

- $\overline{\sigma}(x)$ is nondegenerate, continuous in x.
- Aim: wellposedness of the limit system: $\mathrm{d}\bar{X}_t = \bar{b}(\bar{X}_t)\mathrm{d}t + \bar{\sigma}(\bar{X}_t)\mathrm{d}W_t.$
- The crucial point: the continuity of $x \mapsto \pi^x$.

An example

Let (X_t^{ε}) and (Y_t^{ε}) be stochastic processes respectively on $[0,1]$ and on $[0, \infty)$ with reflection boundary satisfying

$$
\begin{cases} dX_t^{\varepsilon} = Y_t^{\varepsilon} dt + Y_t^{\varepsilon} dW_t, & X_0^{\varepsilon} = x_0 \in (0, 1), \\ dY_t^{\varepsilon} = \frac{1}{\varepsilon} \tilde{f}(X_t^{\varepsilon}, Y_t^{\varepsilon}) dt + \frac{1}{\sqrt{\varepsilon}} dB_t, & Y_0^{\varepsilon} = y_0 \in (0, \infty), \end{cases}
$$

where

$$
\tilde{f}(x,y) = \frac{-x^3 e^{-xy} - (1-x)e^{-y}}{x^2 e^{-xy} + (1-x)e^{-y}}, \quad x \in [0,1], y \in [0,\infty).
$$

For this example, $b(x, y) = \sigma(x, y) = y$ are Lipschitz continuous.

An example

For each $x \in [0,1]$, the invariant probab. measure π^x associated with

$$
dY_t^{x,y} = \tilde{f}(x, Y_t^{x,y})dt + dB_t, \quad Y_0^{x,y} = y \in (0, \infty),
$$

is given by

$$
\pi^x(\mathrm{d}y) = (x^2 \mathrm{e}^{-xy} + (1-x) \mathrm{e}^{-y}) \mathrm{d}y.
$$

Then

$$
\bar{b}(x) := \int_0^\infty b(x, y)\pi^x(\mathrm{d}y) = \begin{cases} 2 - x, & \text{if } x \in (0, 1], \\ 1, & \text{if } x = 0. \end{cases}
$$

 \bullet $\bar{b}(x)$ is not continuous at $x = 0$.

Check directly that for each $x \in [0,1]~ (Y^{x,y}_t)$ $\mathcal{F}_t^{x,y})$ is exponentially ergodic but not strongly ergodic. QQ

Jinghai Shao (Tianjin University) [Averaging principle for fully coupled systems](#page-0-0) Nov. 26, 2022 26 / 31

Consider the parabolic equation:

$$
\partial_t u(t, y) = \mathcal{L}^x u(t, y), \quad t > 0, \ y \in \mathbb{R}^d, \tag{e-5}
$$

with $u(0,y)=h(y),\ y\in\mathbb{R}^d$ and $h\in C_b(\mathbb{R}^d)$, where \mathscr{L}^x is given by

$$
\mathscr{L}^x v(y) = \sum_{k=1}^d f_k(x, y) \frac{\partial v(y)}{\partial y_k} + \frac{1}{2} \sum_{k,l=1}^d G_{kl}(x, y) \frac{\partial^2 v(y)}{\partial y_k \partial y_l}, \quad v \in C^2(\mathbb{R}^d),
$$

and $(G_{kl}(x, y)) = (gg^*)(x, y).$ Let $\Theta^x(t, z; s, y)$, $0 \le s < t$, denotes fundamental solution to (e-5).

 QQQ

Proposition 5.

Assume that

- **1** Strong ergodicity: $\sup_y \| P_t^x(y, \cdot) \pi^x \|_{\text{var}} \le \kappa_1 \mathrm{e}^{-\lambda_1 t}, \quad t > 0.$
- 2 ∃ $\kappa_2 > 0$ $(f(x_1, y) f(x_2, y)) \cdot z \leq \kappa_2 |x_1 x_2| |z|$, \forall , $x_1, x_2, y, z \in \mathbb{R}^d$. **3** $\exists c_1, c_2 > 0$,

$$
|\nabla_z \Theta^x(t, z; s, y)| \le \frac{c_1}{(t - s)^{(d+1)/2}} e^{-c_2 \frac{|y - z|^2}{t - s}}.
$$

 $q(x, y) = q(y)$ depends only on the fast component.

Then $C > 0$ such that

$$
\|\pi^{x_1} - \pi^{x_2}\|_{\text{var}} \le C|x_1 - x_2|^{2/3}.
$$

 QQ

母 → → ヨ →

Proposition 6.

Assume that

1 Strong ergodicity: $\sup_y \| P^x_t(y, \cdot) - \pi^x \|_{\text{var}} \le \kappa_1 \mathrm{e}^{-\lambda_1 t}, \quad t > 0.$ $\bullet \exists \kappa_3 > 0,$

$$
(f(x_1, y_1) - f(x_2, y_2)) \cdot (y_1 - y_2) + ||g(x_1, y_1) - g(x_2, y_2)||^2
$$

\$\leq \kappa_3(|x_1 - x_2|^2 + |y_1 - y_2|^2).

Then for $x_1,x_2\in\mathbb{R}^d$

$$
\mathbb{W}_{bL}(\pi^{x_1}, \pi^{x_2}) \le C|x_1 - x_2|^{\frac{\lambda_1}{\lambda_1 + \kappa_3}}.
$$

For $\mu, \nu \in \mathscr{P}(\mathbb{R}^d)$,

$$
\mathbb{W}_{bL}(\mu,\nu) := \sup \{ |\mu(h) - \nu(h)|; |h| \le 1, |h|_{\text{Lip}} \le 1 \}.
$$

4 D F

K個→ K 目→ K 目→ 一目 → の Q Q+

Theorem 7. (Averaging principle)

The conditions of Proposition 6 for the fast component are valid. For the slow component, assume that

 \bigcirc $\exists \kappa_4 > 0$ such that

$$
|b(x_1, y_1) - b(x_2, y_2)|^2 + ||\sigma(x_1, y_1) - \sigma(x_2, y_2)||^2
$$

\n
$$
\le \kappa_4 (|x_1 - x_2|^2 + |y_1 - y_2|^2).
$$

 $\bullet \exists \kappa_5 > 0$ such that $|b(x, y)| + ||\sigma(x, y)|| \leq \kappa_5(1 + |x|)$.

3 $\inf_{x,y\in\mathbb{R}^d} \inf_{\xi\in\mathbb{R}^d,|\xi|=1} \xi^*(\sigma\sigma^*)(x,y)\xi>0.$ Then $(X^\varepsilon_t)_{t\in[0,T]}$ converges weakly in $\mathcal C([0,T];\mathbb R^d)$ as $\varepsilon\to 0$ to the process $(\bar{X}_t)_{t\in[0,T]}.$

Thank You For Your Attention !

EMAIL:shaojh@tju.edu.cr

O

 \overline{a}

ō

ō

 \overline{O}

ō

Jinghai Shao (Tianjin University) [Averaging principle for fully coupled systems](#page-0-0) Nov. 26, 2022 31 / 31

۵ о

O

৩